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and we can now proceed with expensive optical :
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Methodology

: We performed first-principles plane-wave based spin-polarized Density Functional Theory (DFT) ::
- calculations using the Perdew-Burke-Ernzerhof (PBE) exchange and correlation functionals as
iimplemented in the Quantum ESPRESSO code [2]. We used a scalar relativistic Projector ::
- Augmented Wave (PAVW) pseudopotential with non-linear core correction. :
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_ _ Figure 7: PBE level electronic density of states for Cu-vac center in ZnS with g=0 (left) and Co-vac center in MgO with g=+2 (right).
Figure 2: The workflow of this study.
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B e @ and the rest as a dielectric environment [6] QR code, or visit: EEWe also showed that there can exist multiple charged states of these :
R T _ :{defect each providing its own functionaliies that has potential
ggapplications In near future quantum technologies.

Figure 5: Spintronic
can be described
as the integration of
ferromagnetic
storage and
semiconducting
processors.

: : This ongoing project will be extended to:

::e  Other host materials than ZnS and MgO.

Other types of defect such as

::* Include Hubbard corrections (DFT+U), G,W, Calculatlons

« Optically addressable qubits

* Dilute magnetic semiconductors
« Single-chip computers :
* Quantum memories Storage capability

+ Processing power :
. Scalable solid-state quantum of ferromagnets of semiconductors .+« Extract optical and excited states properties. :
SEeNsors mm Spintronics (possible single-chip computer!) ::+ Utilize the dataset to train machine learning models. :
T References 4] Thompson, S. M. et al., ACS Nano, 17, 5963 (2023)
J oc Barcelona - . .
oxcollonce in N =[s=l- Supercomputing 1] Koenraad, P. M. & Flatte, M. E. Nature Mater., 10, 91 (2011) 5] Sharma, M. et al., Phys. Rev. B, 100, 045151 (2019)
science and TUBITAK R Center :: [2] Giannozzi, P. et al., J. Chem. Phys., 152, 154105 (2020) 6] Sheng et al., J. Chem. Theory Comput. 18, 3512 (2022) :
technology Project No: Centro Nacional de Supercomputacion &a o _ , .
: 123F142 := [3] Freysoldt, C. et al., Phys. Status Solidi B, 248, 1067 (2011) 7] Govoni et al., J. Chem. Theory Comput. 11, 2680 (20195) -



	Slide 1

