
PHYS 477/577
Lecture Note 2

Title: Propagation of an Electromagnetic Wave in an Optical Medium -
Part 2

1 Overview

1. Slowly varying envelope approximation

2. Brief review of Fourier transform

3. Nonlinear wave equation in frequency domain

4. Simplification of nonlinear wave equation

2 Slowly Varying Envelope Approximation

2.1 Breaking down the electric field into a (slowly varying) en-
velope and a central (oscillating) frequency

Our main interest is in short pulses, so E has a temporal structure that is short, but still
long compared to an optical cycle. For EM waves in the optical range, say, at a wave-
length of λ = 1µm (a very common range used in ultrafast optics), the optical frequency
is fopt =

c
λ
= 300THz.

We also commonly define angular frequency as ω = 2πf . Then one optical cycle, Tc (one
peak from the next peak) is 1

f
≈ 3.3fs for λ = 1µm. The approximation is valid as long

as the envelope contains more than a few optical cycles (see Fig. 1 for a typical ultrafast
pulse with and without envelope) .

When we talk about ultrafast optics or ultrafast pulses, while there is no ”hard limit”, it
is generally understood that the pulse is < 10ps and most commonly in the femtosecond
range (1ps = 10−12s, 1fs = 10−15s). This definition comes from the fact that light mainly
interacts with electrons and the characteristic timescale for an excitation of the electrons
to transfer to the atoms is in the range of a few picoseconds. Therefore, an ultrashort
pulse typically has an envelope containing a few to a 100 optical cycles.

Given this overall structure - a superfast oscillating field with a relatively slowly changing
(still ’ultrafast) overall amplitude motivates breaking down the electric field expression
into an envelope and an oscillating field.
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Figure 1: A typical ultrafast pulse in time domain without envelope (left) and with en-
velope (right).

2.2 Rewriting E(r,t) as an envelope and a (faster) oscillating
field

In elementary courses, you would have seen a simpler version numerous times, particularly
for solving wave equations. One would assume the general form for a plane wave,

E(r, t) = A(r, t) cos(ω0t− k0z), (1)

where k0 is the central wavenumber and ω0 is the central angular frequency. In general,
k0 = k0ẑ but we set the coordinates so that the beam goes in the z-direction. You may
have seen this earlier where the envelope term was constant.

However, it is much more convenient to work with complex numbers:

E(r, t) = Re{A(r, t)ei(k0z−ω0t)} = A(r, t)ei(k0z−ω0t) + c.c., (2)

where c.c. denotes the complex conjugate. This is added so that the sum is real valued
but we will not always write it explicitly. We will assume that it is there without writing
it explicitly.

If A was constant in time, we could insert this solution into our wave equation (absorbing
the eik0z term also into A(r)) and we would obtain the Helmholtz equation. Of course,
the Helmholtz equation is for time-independent phenomena. However, our interest is
clearly not in case of constant A. To the contrary we are interested in ultrashort pulses,
i.e., A changing rapidly.

3 A Brief Interlude to Fourier transform

In optics, it is most natural to think the quantities in frequency domain. Fourier transform
is the mathematical tool we use to achieve that. It allows us to decompose an equation
into an infinite sum (i.e., integral) of all different frequencies. The Fourier transform
changes time derivatives into (−iω)’s (see below for proof).

3.1 Nonlinear wave equation in frequency domain

In time domain, we obtained the nonlinear wave equation as:

∇2E(r, t)− 1

c2
∂2E(r, t)

∂t2
= µ0

∂2P(r, t)

∂t2
(3)

Expanding P and separating the linear term from the nonlinear terms:

∇2E(r, t)− 1

c2
∂2E(r, t)

∂t2
= µ0ϵ0χ

(1)E+Nonlinear Terms. (4)
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In the following, by F{f(x)} we mean the Fourier Transform of f(x). Now, by definition
of Fourier transform,

F{E(r, t)} = E(r, ω) =

ˆ ∞

−∞
E(r, t)eiωtdt (5)

So,

F{∂E(r, t)
∂t

} =

ˆ ∞

−∞
lim
∆t→0

E(r, t+∆t)− E(r, t)

∆t
eiωtdt

= lim
∆t→0

(ˆ ∞

−∞

E(r, t+∆t)

∆t
eiωtdt−

ˆ ∞

−∞

E(r, t)

∆t
eiωtdt

)
= lim

∆t→0

1

∆t

(ˆ ∞

−∞
E(r, t+∆t)eiω(t+∆t)e−iω∆t)dt−

ˆ ∞

−∞
E(r, t)eiωtdt

)
= lim

∆t→0

1

∆t

(
e−iω∆t)E(r, ω)− E(r, ω)

)
= E(r, ω) lim

∆t→0

(
e−iω∆t − 1

∆t

)
= −iωE(r, ω).

That means taking the Fourier transform of a derivative results into the Fourier transform

multiplied by −iω. Therefore, F{∂2E(r,t)
∂t2

} = (−iω)(−iω)E(r, ω) = −ω2E(r, ω). Using
this above relation, we can write the nonlinear wave equation in frequency domain:

∇2E(r, ω) +
ω2

c2
E(r, ω) = −µ0ϵ0χ

(1)(ω)ω2E(r, ω) + F{Nonlinear Terms}. (6)

Note that we kept χ(1) as a function of ω and since there is no general way of executing
Fourier transform of nonlinear terms, so we leave it as it is. Later, once we decide to
focus on specific nonlinear terms, we will address this issue.

Moreover, most materials have significant dispersion, i.e., χ(1) (and higher terms) de-
pend on the frequency of the EM wave. This is especially important for us since our
focus is ultrashort pulses. By the Fourier theorem, the shorter the pulse, the broader its
frequency-converge range, or its spectral width (see Fig. 2).

Let’s momentarily forget about the difficulty with taking the Fourier transform of the
nonlinear components of the polarization, so we can recapitulate E&M theory and (linear)
optics. Using µ0ϵ0 = 1

c2
and after rearranging the nonlinear wave equation in frequency

domain, we obtain

∇2E(r, ω) +
ω2

c2
(
1 + χ(1)(ω)

)
E(r, ω) = −µ0ω

2PNL(r, ω), (7)

where we kept the nonlinear polarization term in frequency domain but be aware that
it’s not an exact expression. It’s valid for weak nonlinear polarization compared to linear
polarization.

Also note that, in general χ(1)(ω) is a complex valued function but in a lossless me-
dia, the imaginary component is zero. That means if we ignore the imaginary compo-
nent, we assume that there is no significant loss or gain during propagation. If so, then
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Figure 2: In the top figure two pulses have been depicted in time domain. The blue
pulse is an ultrashort pulse that has high amplitude and the red pulse is a longer pulse
with relatively low amplitude. In the bottom figure, the same two pulses have been de-
picted but in frequency domain where we can see that the shorter the pulse in the time
domain, the wider its spectral width in frequency domain, and vice-versa.

1 + χ(1)(ω) = n2(ω), where n(ω) is the index of refraction and k(ω) = ω
c
n(ω) as we know

from optics.

3.2 Fourier transform of E(r,t)

By definition,

F{E(r, t)} = E(r, ω) =

ˆ ∞

−∞
E(r, t)eiωtdt (8)
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Now using E(r, t) = A(r, t)ei(k0z−ω0t) (assuming a plane wave),

E(r, ω) =

ˆ ∞

−∞
A(r, t)ei(k0z−ω0t)eiωtdt

=

ˆ ∞

−∞
A(r, t)ei(ω−ω0)tdt · eik0z

= A(r, ω − ω0) · eik0z,

(9)

where we defined A(r, ω − ω0) ≡
´∞
−∞A(r, t)ei(ω−ω0)tdt

4 Simplification of nonlinear wave equation

From the previous section, we know that

∇2E(r, ω) +
ω2

c2
(
1 + χ(1)(ω)

)
E(r, ω) = −µ0ω

2PNL(r, ω). (10)

Also, as remarked earlier, n(ω) = c·k(ω)
ω

, this leads to 1 + χ(1)(ω) = c2·k2(ω)
ω2 . Let’s rewrite

the wave equation:

∇2E(r, ω) + k2(ω)E(r, ω) = −µ0ω
2PNL(r, ω). (11)

4.1 Further Notation Simplification

By focusing on a single polarization direction for the electric field, say, E = Ex̂ and
PNL = PNLx̂, we can further simplify the the wave equation. This way we can drop the
vector signs and work with scalar quantities.

Previously we saw that the envelope in the frequency domain is related to the Fourier
transform of the electric field:

E(x, y, z, ω) = A(x, y, z, ω − ω0) · eik0z. (12)

It is typical for A to have Gaussian shape in x and y; we assume a wave in the plane of
(x, y) (perpendicular to z).

The nonlinear polarization term is driven by the electric field, so it will also have a similar
form:

PNL(x, y, z, ω) = P ′
NL(x, y, z, ω − ω0) · eik0z. (13)

Now inserting all these terms into the nonlinear wave equation eq.11:

∇2A(x, y, z, ω−ω0) ·eik0z+k2(ω)A(x, y, z, ω−ω0) ·eik0z = −µ0ω
2P ′

NL(x, y, z, ω−ω0) ·eik0z.
(14)

Note that here only eik0z term has z-dependency. Now we can express the Laplacian by
partial derivative and then evaluate the successive derivative. After that we drop out the
common term and we will have:(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
A(x, y, z, ω − ω0) + 2ik0

∂A(x, y, z, ω − ω0)

∂z
+

k2(ω)A(x, y, z, ω − ω0)− k2
0(ω)A(x, y, z, ω − ω0) = −µ0ω

2P ′
NL(x, y, z, ω − ω0) (15)
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4.2 The wave vector expansion

The wave vector, k(ω), depends on frequency due to the dispersion property. This de-
pendence varies from material to material. However, to a very good approximation, it
varies slowly with ω, which allows us to expand it around ω0,

k(ω) = k0 + k1(ω − ω0) +
1

2!
k2(ω − ω0)

2 +
1

3!
k3(ω − ω0)

3 + · · · .

Let’s connect to regular E&M courses or to linear optics:

• k0 =
n0ω0

c
is related to the phase velocity of light

• k1 =
dk
dω

∣∣
ω0

= 1
vg

is the inverse group velocity.

• k2 =
d2k
dω2

∣∣∣
ω0

is the second order dispersion, aka group velocity dispersion.

• Similarly, kn = dnk
dωn

∣∣
ω0
, is the n-th order dispersion.

Now we write the wave equation (expressed without the arguments to unclutter the
notation) and insert the expansion of k(ω) into it:(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+ 2ik0

∂

∂z
− k2

0

)
A+ k2A = −µ0ω

2P ′
NL

⇒
(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+ 2ik0

∂

∂z
− k2

0

)
A+

(
k0 + k1(ω − ω0) +

k2
2
(ω − ω0)

2 +
k3
6
(ω − ω0)

3 + · · ·
)2

A

= −µ0ω
2P ′

NL (16)

4.3 Going back to the time domain

Now we want to go back to the time domain through an inverse Fourier transform. This
is easy except that we have many terms with (ω − ω0)

i dependence and one term with
ω2 dependence.

Let’s introduce a new variable ω′ ≡ ω − ω0 and take the inverse Fourier transform over
ω′. We only need to replace ω = ω′ + ω0 ⇒ ω2 = (ω′ + ω0)

2. Now taking the inverse
Fourier transform of ω2:

ω2 = (ω′ + ω0)
2 = ω′2 + ω2

0 + 2ω′ω0

F−1

−−→ − ∂2

∂t2
+ ω2

0 + 2ω0i
∂

∂t
(because ω0 is constant)

=

(
ω0 + i

∂

∂t

)2

Note that we will express the amplitude in time domain as a(t) whereas in Fourier domain
we express it using A(ω) to avoid confusion (a(t) or A(ω) are also functions of x,y,z). Then
in time domain our equation becomes,(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+ 2ik0

∂

∂z
− k2

0

)
a(t)+

(
k0 + ik1

∂

∂t
+D

)2

a(t) = −µ0

(
ω0 + i

∂

∂t

)2

PNL(t),

(17)
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where PNL(t) is the inverse Fourier transform of PNL(ω) and we collected all the disper-
sion terms in D, i.e., D ≡ −k2

2
∂2

∂t2
+ · · · .

Throughout our course, we will be going back and forth between time domain and fre-
quency domain many times because some things are better understood in frequency
domain such as dispersion, while other things are easier to analyze in time domain such
as the nonlinear polarization term. When we will write code for simulation, we will ex-
perience this.

Our equation has gotten as complicated as it will get. It is time to start simplifying.
First, we will make a reference frame transformation to one that moves with the center
of the pulse, i.e., at the group velocity. So, the transformation is from (z, t) to (z, τ)
where τ = t− z

vg
, which will be centered at the pulse, so it will tell us the time difference

with respect to the center of the moving reference frame.

By the chain rule,

∂

∂z
−→ ∂

∂z
· ∂z

∂z︸︷︷︸
1

+
∂

∂τ
· ∂τ

∂z︸︷︷︸
−1
vg

= −k1

=
∂

∂z
− k1

∂

∂τ
,

∂

∂t
−→ ∂

∂z
· ∂z

∂t︸︷︷︸
0

+
∂

∂τ
· ∂τ

∂t︸︷︷︸
1

=
∂

∂τ
,

and
∂2

∂z2
−→ ∂

∂z

(
∂

∂z
− k1

∂

∂τ

)
=

∂

∂z

(
∂

∂z

)
− ∂

∂z

(
k1

∂

∂τ

)
=

(
∂

∂z
− k1

∂

∂τ

)(
∂

∂z

)
−
(

∂

∂z
− k1

∂

∂τ

)(
k1

∂

∂τ

)
=

∂2

∂z2
− k1

∂2

∂τ∂z
− k1

∂2

∂τ∂z
+ k2

1

∂2

∂τ 2

=
∂2

∂z2
− 2k1

∂2

∂τ∂z
+ k2

1

∂2

∂τ 2
.

Now with the help of these three results, we can write Eq.(17) as:(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
− 2k1

∂2

∂τ∂z
+ k2

1

∂2

∂τ 2
+ i2k0

(
∂

∂z
− k1

∂

∂τ

)
− k2

0

)
a(t)+

(
k2
0 + i2k0k1

∂

∂τ

+2k0D − k2
1

∂2

∂τ 2
+ i2k1D

∂

∂τ
+D2

)
a(t) = −µ0ω

2
0

(
1 +

i

ω0

∂

∂τ

)2

PNL(t). (18)

Canceling the color coded terms from Eq.(18) with each other and collecting the similar
terms together, we have:
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(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
a+ i2k0

(
1− k1

k0

∂

∂τ

)
∂a

∂z
+ 2k0D

(
1 + i

k1
k0

∂

∂τ

)
a+

D2a = −µ0ω
2
0

(
1 +

i

ω0

∂

∂τ

)2

PNL. (19)

In Eq.(19), all the color coded terms will vanish because of the relative magnitude of these
terms. This is the Slowly Varying Envelope Approximation (SVEA) that we have been
building up to. The reason why these terms can be taken as negligible in comparison
with other terms is explained below. Notice that

k1
k0

=
1

vg

c

n0ω0

=
1

ω0

c/n0

vg
∼=

1

ω0

,∵
c/n0

vg
∼ 1 and n0 ∼ 1.

In other words, the 1
ω0

rules the expression which is a very high frequency. Physically, ω0

is related to the length of one optical cycle which is very very short. Similar reasoning
allows us to ignore i

ω0

∂
∂τ

term as well.

Now, consider the term k1
k0

∂a
∂τ
. Here, ∂a

∂τ
is the derivative of the envelope. So, k1

k0
∂a
∂τ

denotes
one optical cycle divided by the length of the pulse. So, unless we are dealing with only
a few cycle, this term is very small and we can neglect it compared to 1. For instance,
this approximation can be applied to a 100fs pulse consists of about 30 cycles at 1µm.

Similarly, ∂2a
∂z2

≪ k0
∂a
∂z

becomes ∂a
∂z

∼ amax

d
where d is the size of the beam. and k0 = 2π/λ.

That means unless the beam is focused to the order of∼ λ, we can ignore this term as well.

Finally, D2a ∼ ∂2a
∂τ2

+ higher order terms. Even ∂3a
∂τ3

is very weak unless we have very short
(≪ 100fs) pulse and at any rate this is the highest-order term we will consider in this class.

In summary, we are left with only

i2k0
∂a

∂z
+

(
∂2

∂x2
+

∂2

∂y2

)
a+ 2k0Da = −µ0ω

2
0PNL. (20)

Dividing both sides by i2k0, then using the relation k0c = ω0n0 and after than expanding
D upto the third order terms:

∂a

∂z
− i

2k0

(
∂2

∂y2
+

∂2

∂x2

)
a︸ ︷︷ ︸

Spatial effects

+
ik2
2

∂2a

∂τ 2
− ik3

6

∂3a

∂τ 3︸ ︷︷ ︸
Temporal effects

=
iµ0ω0c

2n0

PNL︸ ︷︷ ︸
Nonlinear effects

(21)

Due to the coordinate transform, everything in this equation moves with the pulse. That
is why k0 and k1 do not appear. k0, related to the phase velocity, also does not influence
most of the physics we will encounter. So, this equation basically describes how the pulse
changes as it propagates.

We are now going to investigate two out of the three effects, namely, temporal (disper-
sive) effects and nonlinear effects, one by one, before putting them into action together.
We will not discuss spatial effects (in detail) until much later in the course. Physically,
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spatial effects correspond to diffraction and it’s only significant when the beam is of a
size comparable to the optical wavelength.

Therefore, for the majority of what follows, we will consider:

∂a

∂z
+ i

k2
2

· ∂
2a

∂τ 2
− i

k3
6

· ∂
3a

∂τ 3
=

iµ0ω0c

2n0

PNL (22)
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